Some Analytical and Numerical Consequences of Sturm Theorems

نویسندگان

  • Javier Segura
  • Lance Littlejohn
  • J. Segura
چکیده

The Sturm comparison theorems for second order ODEs are classical results from which information on the properties of the zeros of special functions can be obtained. Sturm separation and comparison theorems are also available for difference-differential systems under oscillatory conditions. The separation theorem provides interlacing information for zeros of some special functions and the comparison theorem gives bounds on the distance between these interlacing zeros. For monotonic systems Sturm theorems for the zeros do not exist because there is one zero at most. Instead, bounds on certain function ratios can be obtained using information on the coefficients of the system, and particularly monotonicity properties. Similar ideas that can be used to prove Sturm theorems can be considered for obtaining this type of bounds; the qualitative analysis of associated Riccati equations is a key ingredient in both cases. We review some applications for modified Bessel, parabolic cylinder and Laguerre functions and we also present related results for incomplete gamma functions. Sturm theorems, both for second order ODEs and first order DDEs can be applied for the computation of the real zeros of special functions. Recently a fourth order method based on the Sturm comparison theorem for computing the real zeros of solutions of second order ODEs was developed. We discuss the connection of this method with the Sturm theorem and we explain how this has been extended to the computation of complex zeros. AMS Subject Classifications: 34C10, 26D20, 34M10, 39A06, 65H05, 33F05, 30E99.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Inverse Sturm-Liouville Problems with Transmission Conditions on Two Disjoint Intervals

‎In the present paper‎, ‎some spectral properties of boundary value problems of Sturm-Liouville type on two disjoint bounded intervals with transmission boundary conditions are investigated‎. ‎Uniqueness theorems for the solution of the inverse problem are proved‎, ‎then we study the reconstructing of the coefficients of the Sturm-Liouville problem by the spectrtal mappings method.

متن کامل

Numerical solution of the Sturm-Liouville problem by using Chebyshev cardinal functions

In this manuscript, a numerical technique is presented for finding the eigenvalues of the regular Sturm-Liouville problems. The Chebyshev cardinal functions are used to approximate the eigenvalues of a regular Sturm-Liouville problem with Dirichlet boundary conditions. These functions defined by the Chebyshev function of the first kind. By using the operational matrix of derivative the problem ...

متن کامل

On‎ ‎inverse problem for singular Sturm-Liouville operator with‎ ‎discontinuity conditions

‎In this study‎, ‎properties of spectral characteristic are investigated for‎ ‎singular Sturm-Liouville operators in the case where an eigen‎ ‎parameter not only appears in the differential equation but is‎ ‎also linearly contained in the jump conditions‎. ‎Also Weyl function‎ ‎for considering operator has been defined and the theorems which‎ ‎related to uniqueness of solution of inverse proble...

متن کامل

The numerical values of the nodal points for the Sturm-Liouville equation with one turning point

An inverse nodal problem has first been studied for the Sturm-Liouville equation with one turning point. The asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated and an asymptotic of the nodal points is obtained. For this problem, we give a reconstruction formula for the potential function. Furthermore, numerical examples have been established a...

متن کامل

Non-Archimedean fuzzy metric spaces and Best proximity point theorems

In this paper, we introduce some new classes of proximal contraction mappings and establish  best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014